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The extreme cost of fighting wildland fires has brought fire suppression expenditures to the forefront of budgetary and policy debate in the United States.
Inasmuch as large fires are responsible for the bulk of fire suppression expenditures, understanding fire characteristics that influence expenditures is important
for both strategic fire planning and onsite fire management decisions. These characteristics then can be used to produce estimates of suppression expenditures
for large wildland fires for use in wildland fire decision support or after-fire reviews. The primary objective of this research was to develop regression models
that could be used to estimate expenditures on large wildland fires based on area burned, variables representing the fire environment, values at risk, resource
availability, detection time, and National Forest System region. Variables having the largest influence on cost included fire intensity level, area burned, and
total housing value within 20 mi of ignition. These equations were then used to predict suppression expenditures on a set of fiscal year 2005 Forest Service
fires for the purpose of detecting “extreme” cost fires—those fires falling more than 1 or 2 SDs above or below their expected value.
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The severity of recent fire seasons in the United States has
highlighted the extreme expenditures associated with wild-
land fire suppression. In fiscal years (FY) 2000, 2002, 2003,

and 2006, fire suppression expenditures by the USDA Forest Service
alone totaled about $1 billion annually. For the 10 years prior to
2000, fire suppression expenditures averaged around $350 million
annually (in constant 2004 dollars). Along with the goal of dimin-
ishing the risk and consequences of severe wildland fires, the extreme
expense of fighting these fires has become a driving force behind
agency policy for some time. The desire to contain fire suppression
expenditures motivates fuel treatments, affects suppression strate-
gies and tactics, and helps define the relationship between the Forest
Service and oversight agencies such as the Office of Management
and Budget.

Large fires are responsible for the bulk of fire suppression expen-
ditures (USDA Forest Service, USDA, and NASF 2003); therefore,
understanding the characteristics of large fires is important for both
strategic fire planning and onsite fire management decisions. Then,
the characteristics can be used to predict suppression expenditures
for individual, large fires. Currently, estimates of fire suppression
expenditures for planning or decisionmaking are based on historical
per acre expenditures or by selecting the firefighting resources to be
used and arriving at an aggregate cost for these resources. Both have
problems. Per acre expenditure estimates often are based on a small
number of fires, in which their characteristics might vary dramati-
cally from the fire in question. Aggregating the cost of selected fire
suppression resources does not take into account the large overhead
costs often associated with these larger fires. Developing regression
models that take into account a variety of factors affecting suppres-
sion expenditures may be one way to improve these estimates
(MacGregor and Haynes 2004).

Some research into developing statistical models to either predict
fire expenditures or investigate causal factors of expenditures has
been conducted. Donovan et al. (2004) used regression analysis to
identify variables affecting suppression expenditures for 58 fires that
occurred in Oregon and Washington in 2002. The only significant
variables were fire size and terrain with measures of housing density,
a focus of the study, not showing up as a significant predictor of
costs. Steele and Stier (1998) developed a series of regression equa-
tions to estimate suppression costs for Wisconsin wildfires managed
by the State Department of Natural Resources. Significant variables
included final fire size and burning index. Earlier studies such as the
one performed by Gonzalez-Caban (1984) attempted to estimate
suppression expenditures based on the number and type of the dif-
ferent resources used on the fire, and it found considerable variation
among fires and regions of the country.

In these analyses, it is important to differentiate between expen-
ditures and economic costs. The actual cost of the fire has many
components that are not accounted for by the suppression expendi-
tures on the fire such as property-related losses, burned area emer-
gency rehabilitation expenditures, long-term rehabilitation projects,
water quality mitigation, business losses, and loss of recreation val-
ues. In our study, we made no attempt to account for all the costs
associated with wildfires. When we use the word “cost” in this arti-
cle, unless otherwise stated, we are talking about the expenditures to
suppress the fire.

Using data on 1,550 fires reported by the Forest Service from FYs
1995–2004, we developed equations to predict fire suppression ex-
penditures on a given wildfire based on fire characteristics that we
hypothesized would affect expenditures and that were readily avail-
able or could be calculated with given information. Such equations
could be used in prefire planning and real-time decision support
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systems. They also could be helpful for postfire analysis. Actual
expenditures on individual fires in any given year could be compared
with their “predicted” expenditures, and those fires with actual ex-
penditures above a certain range (outliers) could be further reviewed
to see why their costs were so high relative to other fires with similar
characteristics. The statistical model presented in this study is de-
signed to balance statistical performance with ease of use for predic-
tion and analysis of fires beyond the sample used to estimate the
parameters of the model.

Methods
We collected expenditure and fire characteristic data for large

fires reported in the Forest Service’s fire occurrence database, the
National Interagency Fire Management Integrated Database
(NIFMID), that could be accurately cross-identified with the Forest
Service accounting system. We then developed and tested a theoret-
ical model with suppression cost per acre as a function of the fire
environment, values at risk, detection time, and resource availability
for individual fires using ordinary least squares regression. Below we
discuss the data collection process, the model and variables used, and
the analysis methods.

Data Collection
Data were collected on fires reported in the NIFMID for FYs

1995–2004 (FY 1995 was the earliest year for which financial infor-
mation was still available). Our analysis was restricted to fires that
exceeded the “escaped” fire limit, defined by the Forest Service as
greater than 100 ac before FY 2003 and greater than 300 ac since FY
2003. This restriction was necessary because smaller fires generally
are assigned to a generic P-code for a region or forest, making it
impossible to relate actual expenditures to individual fires and their
characteristics (P-codes are the accounting codes the Forest Service
uses to track expenditures on wildfires). Additionally, we used only
fires where the Forest Service was the recorded protection agency
because of the difficulty of obtaining expenditures by all agencies
involved in a wildfire. We hoped that by making this restriction the
Forest Service would have incurred the bulk of the expenditures on
these fires, and we would lessen potential underestimation due to
not accounting for the expenditures of other agencies. An earlier
analysis of 216 fires, where expenditures for all agencies were ob-
tained and the Forest Service was identified as the lead protection
agency, showed that the Forest Service expended, on average, more
than 90% of the money on these fires (Rocky Mountain Research
Station, unpublished report, 2002). The remaining 10% was split
between the Department of the Interior and state/local agencies.

Estimated suppression costs are available for most of the fires
reported in the NIFMID or from the ICS-209 (the ICS-209 Inci-
dent Status Summary is used for reporting information on “inci-
dents of significance” [USDA Forest Service 2004b]). However,
through extensive use and analysis of the data, we believe that the
cost estimates found in these reports are largely inaccurate and
should not be used for analysis. For instance, in FYs 2000 and 2002,
when the Forest Service spent more than $1 billion on suppressing
wildland fires, the estimated costs in the NIFMID only totaled $655
and $629 million, respectively. The only accurate data on suppres-
sion expenditures are the actual expenditures obtained from the
Forest Service accounting system, but there is difficulty matching
these expenditures with specific fires. Starting in FY 2005, the P-
code will be a required field in the NIFMID, making subsequent
analysis of large fire expenditures much easier.

Fire complexes also cause problems when analyzing expenditures
on individual fires. A fire complex is a group of fires that are admin-
istratively treated as one fire. There is no set rule for tracking expen-
ditures on complexes, but, usually, expenditures for all fires in the
complex are assigned to a single P-code. Where possible, we appor-
tioned actual expenditures to the fires in the complex based on the
estimated costs shown in the NIFMID and used these fires in our
analysis. This was possible for approximately 80% of the identified
fire complexes. For 17 fire complexes (comprised of 61 individual
fires) this was not possible because of missing information or be-
cause we were unsure if we had accounted for all the fires in the
complex. The necessary removal of these fires from the analysis is
unfortunate because fire complexes often are some of the most ex-
pensive fires.

Our data collection requirements had the following effect on the
number of fires available for analysis: fires reported in the NIFMID,
100,643; fires greater than 100 ac (or 300 ac depending on the year),
3,061; fires where the Forest Service was the recorded protection
agency, 2,518 fires; remaining fires with useable P-codes, 1,644;
final fires used in analysis, 1,550 (because of missing values for some
variables). Rather than use other statistical methods for addressing
the 94 observations with missing values (such as using the sample
mean), we chose to eliminate these observations from the analysis. A
regression relationship is conditional (conditioned) on the explana-
tory variables; therefore, selection of a sample from a population
based on one or more explanatory variables is not a problem unless
there is reason to believe that the random regression disturbance is in
some way correlated with missing data. Given our knowledge of the
data collection process, we see no reason why this would be the case.

The Model
The goal of fire suppression is to reduce resource damage from a

natural hazard, in highly variable environments, with considerable
uncertainty associated with such things as fire behavior and weather.
Some fires, regardless of the amount of suppression resources used,
will resist control. Others are relatively easy to suppress. We hypoth-
esize that suppression expenditures are a function of environmental
factors during the fire, the values at risk surrounding the fire, the
availability of suppression resources, the initial suppression strategy,
and the amount of time between ignition and discovery (delay).
Therefore, a general form for a regression model to estimate the
impacts of these variables can be summarized as

suppression expenditures/area burned � fn (area burned,

environment, values at risk, resource availability, initial

suppression strategy, and delay).

We use area burned, rather than fire perimeter, because perimeter
information was not available for the majority of fires used in our
analysis. Also, in practice, fire managers are accustomed to thinking
in terms of cost per acre; therefore, cost per acre was used as the
response variable rather than total cost.

Given that our observations are at the level of an individual fire,
there is a potential problem with including fire size as an indepen-
dent variable to explain cost per area burned. Standard fire economic
theory implies that as more suppression effort is directed at a fire,
area burned goes down—more money expended reduces area
burned. Consequently, in principle, there may be a two-way causal-
ity: cost per acre affects area burned and area burned affects fire
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costs. If this two-way causality exists and is not accounted for in
estimation, area burned is said to be endogenous, and the parameter
estimates of the model are likely to be biased. However, large fires by
their definition resist control. These events are very heterogeneous
and, therefore, area burned may be more a function of fire complex-
ity or potential than suppression effort, thus reducing the causal
relationship between area burned and cost per acre. We pursue the
standard approach, which is to test for endogeneity of area burned,
and if it is found to be endogenous, then the use of an instrumental
variables estimation method is warranted (Cameron and Trivedi
2005).

Explanatory Variables
Fire Environment

The environment in which a fire occurs can affect the difficulty
and, therefore, the costs of controlling a wildfire. Characteristics
such as rough or steep terrain, heavy fuel loads, and dry fuel condi-
tions may increase unit suppression costs. A variety of fire charac-
teristics that may affect suppression expenditures are available in the
NIFMID or can be calculated using the information available there,
including slope, aspect, elevation, fire intensity level (FIL), fuel type,
and energy release component (ERC). Table 1 shows the fire char-
acteristic information we extracted from the NIFMID for the fires in
our database and the fire characteristics that were collected or calcu-
lated separately.

Topographic variables (slope, elevation, and aspect) are included
because of the influence they have on fire behavior (all three are
generally included in models of fire behavior such as FARSITE

[Finney 2004]). Steeper slopes may cause fires to spread more rap-
idly, elevation can affect the amount of wind and moisture in an
area, and south- and west-facing aspects often have lower humidity
and/or higher temperatures. We hypothesize that the sign on eleva-
tion and slope will be positive, given no collinearity issues. Aspect,
which is recorded in the NIFMID according to azimuth, was trans-
formed to two variables—the sine and cosine of the azimuth (in
radians; Mardia and Jupp [2000]) as opposed to using dummy
variables for each aspect class, which would use up many more
degrees of freedom. We hypothesize that the sign on the cosine and
sine of aspect will be negative. A negative sign on these coefficients
would increase costs for southern and western aspects where fuels are
dryer and decrease it on eastern and northern aspects.

Fuel type also influences fire behavior and firefighting difficulty.
We used five dummy variables to account for fuel type at the igni-
tion point of the fire: grass, shrub, two brush variables, timber, and
slash. The two brush models were brush and brush4, where brush
reflected the National Fire Danger Rating System (NFDRS) fuel
models F and Q (brush and dormant brush), and brush4 reflected
NFDRS fuel models B and O (chaparral or heavy brush). Conver-
sations with fire personnel identified these classifications as the most
useful in determining required suppression effort (Merrill Saleen,
National Interagency Fire Center, personal communication, Feb. 2,
2005). The reference category for fuels was brush4. We hypothe-
sized that grass and brush would be less expensive than brush4 and
timber and slash would be more expensive.

The other fire environment variable that came directly from the
NIFMID, FIL, is an estimate of the fire behavior at the fire head

Table 1. Variables used in development of regression equations �dependent variable � ln(wildland fire suppression
expenditures/acre)�.

Fire characteristics Variable definition Source

Size
ln(Total acres burned) Natural log of total acres within the wildfire perimeter NIFMID

Fire environment
Aspect Sine and cosine of aspect at point of origin in 45° increments NIFMID
Slope Slope percent at point of origin NIFMID
Elevation Elevation at point of origin NIFMID
Fuel type Dummy variables representing fuel type at point of origin. Grass � NFDRS fuel

models A, L, S, C, T, and N; Brush � NFDRS fuel models F and Q; slash �
NFDRS fuel models J, K, and I; timber � NFDRS fuel models H, R, E, P, U, and
G; brush4 (reference category) � NFDRS fuel models B and O

NIFMID

FIL Dummy variable for FIL 1–6 (FIL 1 � reference category) NIFMID
ERC ERC calculated from ignition point using nearest weather station information

(cumulative frequency)
Calculated

Values at risk
ln(Distance to nearest town) Natural log of distance from ignition to nearest census designated place Calculated
ln(Total housing value 5) Natural log of total housing value in 5-mi radius from point of origin (census data)/

100,000
Calculated

ln(Total housing value 20) Natural log of total housing value in 20-mi radius from point of origin (census data)/
100,000

Calculated

Reserved areas Dummy variables indicating whether fire was in a wilderness area, inventoried roadless
area, or other special designated area (reference category � not in reserved area)

Calculated

ln(Distance to reserved area boundary) If in a reserved area, natural log of distance to area boundary Calculated
Detection time

ln(Detection delay) Natural log of hours from ignition time to discovery time Calculated
(ln�Detection delay�)2 Square of ln of detection delay Calculated

Suppression strategy
Initial suppression strategy Dummy variables representing initial suppression strategy (confine, contain, and

control) � reference category � control
NIFMID

Resource availability
ln(Average deviation) Natural log of the difference between the number of fires burning in the region during

the period of the specified fire compared with the average in that region during the
same time of year

Calculated

Region Dummy variables for National Forest System region (reference category for western
model � region 1 and for eastern model � region 9)

NIFMID
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during the first burning period and is based on the calculated flame
length, where FIL 1 is 0–2 ft, FIL 2 is 2–4 ft, FIL 3 is 4–6 ft, FIL
4 is 6–8 ft, FIL 5 is 8–12 ft, and FIL 6 is greater than 12 ft. Because
this is a categorical variable, it was transformed to five dummy
variables, with FIL 1 being the reference category. We hypothesized
that higher FILs would be associated with increased suppression
costs because of the difficulties of fighting fire when extreme fire
behavior is present.

To assess the effect of fire potential or fire danger on expendi-
tures, in addition to FIL, we calculated an ERC index, which is a
number related to the available energy (BTU) per unit area (square
foot) within the flaming front at the head of a fire. It takes into
account fuel moisture in both live and dead fuels and is a good
reflection of drought conditions (National Wildfire Coordinating
group 2002, California Board of Forestry 2004). ERC was calcu-
lated using Fire Family Plus (USDA Forest Service 2004a) with
information from the weather station closest to the fire ignition
point and based on Fuel Model G (Patricia Andrews, Rocky Moun-
tain Research Station, personal communication, Aug. 20, 2003).
Fuel model G was used because it has been found to be correlated
with fire behavior in many areas of the country (Hall et al. 2005).
The raw ERC value was converted to a cumulative frequency (the
percentage of observations, based on local weather station informa-
tion, that fall at or below the calculated ERC value) to better reflect
fire conditions. We hypothesized that the sign on the coefficient for
ERC would be positive: as fuel becomes drier, suppression becomes
more difficult and costs increase.

Values at Risk
Areas with high values at risk such as private structures, public

infrastructure, and high value timberlands are likely to command
more suppression resources (USDA Forest Service 1995a, 1995b,
National Academy of Public Administration 2002) and may, there-
fore, have higher costs than areas where fire is unlikely to cause
significant resource losses. In fact, population encroachment into
forested areas often is one of the factors used to explain the high costs
of suppressing wildfires (Snyder 1999). Data on how much is spent
to protect people and property are not readily available, so we as-
sessed these effects indirectly using two different approaches: (1)
calculating demographic characteristics within certain radii of fire
ignition and (2) computing the distance to the nearest town. Using
2000 census data we calculated measures reflecting income (e.g.,
medium family income and per capita income), property values at
risk (e.g., median housing value and total housing value), and total
population for various radii around the fire ignition points: 5, 10,
and 20 mi. All these variables were highly correlated with one an-
other, and simple correlations showed total property values at dif-
ferent distances from the fire were most significantly correlated with
suppression costs. Therefore, other demographic variables were
omitted from the final model. We hypothesized that the total hous-
ing value variables would increase suppression costs and that dis-
tance from the nearest town would decrease costs.

Values at risk and the role of fire in land management may be
substantially different between unreserved Forest Service lands and
designated wilderness and roadless areas, resulting in fundamentally
different suppression strategies. It is important to note, however,
that wildland fire-use fires (naturally ignited fires that are managed
to achieve resource benefits) were not contained in the dataset used
for this analysis. Although 570 of the fires in our dataset began on
reserved lands, these are fires in which active suppression took place.

When this analysis was done, only 29% of Forest Service wilderness
areas had approved fire management plans that allowed for the
option of wildland fire use somewhere within their boundaries
(Carol Miller, Aldo Leopold Wilderness Research Institute, per-
sonal communication, Jan. 20, 2004). Using the latitude and lon-
gitude of the fire ignition point, we calculated whether the fire
started in one of these reserved areas and if it did, the distance to that
area’s boundary. These calculations were done for three categories of
reserved lands: (1) wilderness areas, (2) inventoried roadless areas,
and (3) other special designated areas such as wilderness study areas
or national recreation areas. We also calculated the distance from the
fire ignition to the nearest boundary of that particular area; e.g., for
a fire starting in a wilderness area, the distance to the wilderness area
boundary was calculated. Our hypothesis was that fires in reserved
areas would be fought less aggressively and thus have reduced unit
suppression costs (the sign on the dummy variables would be nega-
tive). We also hypothesized that fires further within the reserved area
boundary would cost less than those closer to the boundary; fires
closer to the boundary would be fought more aggressively because of
increased risk of the fire traveling out of the reserved area.

Resources Available
The effect of resource availability on suppression costs is theoret-

ically unclear. In one respect, having additional resources available
may allow more rapid and efficient line construction and, therefore,
reduce unit costs. However, it may be that the availability of re-
sources may encourage excessive resource use due to a management
incentive system that encourages risk-averse behavior and thus in-
creases unit costs (Donovan and Brown 2005). Conversely, a lack of
resources may dictate a revised and less-aggressive suppression strat-
egy in some areas of the fire zone, resulting in a larger fire area, thus
lowering unit costs.

We collected or calculated two variables to account for availabil-
ity of resources. The first was the national preparedness level on the
date of the fire ignition (National Interagency Fire Center 2004),
but this variable was omitted from the final model because it was not
statistically significant in preliminary regressions. The second vari-
able, average deviation, estimates how many other fires were burn-
ing in the region at the same time as the fire in question, compared
with the average number of fires that usually burn at that time of
year. Our hypothesis was that if more fires were occurring than
average for that time of year, firefighting resources might have been
limited.

Following an analysis done by Lankoande (2005), we included
delay, or response time, in the model. Delay was measured as the
time from fire ignition to discovery, and it is expected (as Lankoande
found) to be positive. We also included the square of delay because
a scatterplot of delay and cost per acre indicated a possible quadratic
relationship.

The final variable included in the model was initial suppression
strategy (confine, contain, or control). According to the FIRESTAT
User’s Guide (USDA Forest Service 2003), these terms are defined as
follows: (1) confine means to limit fire spread within a predeter-
mined area principally by use of natural or preconstructed barriers or
environmental conditions, (2) contain is the completion of a control
line around a fire and any associated spot fires that can reasonably be
expected to check the fire’s spread, and (3) control is the completion
of a control line around a fire and any associated spot fires that can
reasonably be expected to hold under foreseeable conditions. We
hypothesized that a more aggressive initial strategy (control) would
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increase cost per acre. It is important to note, however, that this is
the strategy at the time the fire began. As the fire progressed, the
suppression strategy may have changed.

Analysis
The results of our final analysis were two regional fixed effects

models, one for the western United States (National Forest System
Regions 1–6) and one for the eastern United States (National Forest
System Regions 8 and 9; Figure 1). Statistical tests indicated that, at
least for our dataset, it was not necessary to treat costs and acres as
being simultaneously determined. A Wu-Hausman test failed to
reject exogeneity of acreage for predicting cost per acre (P � 0.23).

All candidate independent variables were entered into the model
to test significance. To develop a more parsimonious model, vari-
ables with a P value greater than 0.15 were removed one at a time,
with the exception of categorical variables (such as fuel type) or other
variables we felt should be treated as a group (such as housing values)
with the model being reevaluated at each step. These groups of
variables were handled differently. If F tests for joint significance
showed that a group of related variables contributed to the model as
a whole, then all variables within the group (except the reference
variable in the case of categorical groups) were kept in the model
regardless of their individual significance level.

Final model specification used a natural log transformation for
the dependent variable (Forest Service expenditures per acre) as well
as for most of the independent variables, with the exception of
categorical variables. This model provided the best fit of the data and
mitigated problems with heteroskedaticity among residuals. The
general linearized model was

ln�$/ac� � B0 � Bi
*ln(X) � Bj

*Z,

where X are the fire characteristics to which we applied the natural
log transformation (e.g., acres and distances), and Z were the vari-
ables that were not transformed, either because they were dummy or
categorical variables or transformation did not appear to be indi-
cated (such as slope and elevation). The percent impact of dummy
variables is calculated following Kennedy (1981).

One final caveat about the estimated parameters follows from the
fact that the sample is limited only to large fires. The consequence of
this sample truncation is that the parameter estimates are not appli-
cable to fires smaller than the lower limit of 100 ac. In addition, the
parameter estimates for each variable given truncation are com-

prised of two parts: one represents the effect of a variable on the
probability of being in the sample, and one represents the effect of
the variable on the costs given that the fire size is big enough to be in
the sample. Given that the primary purpose of this model is predic-
tive, disentangling these effects on specific parameter estimates is of
little importance, and we settled for the simpler linear specification
rather than a truncated regression specification for the sake of prag-
matic out-of-sample application of the model. Furthermore, explor-
atory regressions accounting for this truncation indicated that the
estimated effects on the individual parameter estimates of this trun-
cation are relatively small.

We do not feel that the differences in the lower bounds on
acreage depending on year (100 ac versus 300 ac) should cause
problems with the estimation process. There is no
econometric/statistical problem, in principle, for having the sample
based on the two different lower bounds as long as the same regres-
sion relationship holds for each subsample, which we found to be
true in our preliminary investigations.

Results
The 1,550 fires analyzed in this study accounted for $2.07 billion

of Forest Service suppression expenditures (in constant 2004 dol-
lars) over the 7 years included in the sample. The average per fire cost
was $1.3 million and the average cost per acre was $979 (both in
constant 2004 dollars). Fires were distributed regionally as follows:
Region 1, 217 fires; Region 2, 93 fires; Region 3, 222 fires; Region
4, 250 fires; Region 5, 199 fires; Region 6, 160 fires; Region 8, 309
fires; and Region 9, 100 fires. Table 2 shows average fire cost and
cost per acre for each of the regions. One-factor analysis of variance
indicated significant differences in both cost per acre and cost per
fire among regions, with Regions 5 and 6 having significantly higher
costs than Regions 1, 2, 3, and 4 and Regions 8 and 9 having
significantly lower costs (P 	 0.001 using Tukey’s multiple com-
parison test).

Significant Variables and Their Affect on Cost
The final regression models for the West and the East are shown

in Table 3, which lists the variables included, the estimated coeffi-
cients, and the P values. With the exception of elevation, all other
variables (or groups of variables) were significant in at least one of
the regression equations.

The size of the fire, in terms of area burned, has a negative effect
on cost per acre, all else held constant. The interpretation for the
coefficient on log transformed variables is that a 1% increase in the
magnitude of the variable results in a B (the estimated coefficient)

Figure 1. Map of USDA National Forest System regions.

Table 2. Wildland fire suppression expenditures per fire and
expenditures per acre for 1,550 large wildland fires, FY
1995–2004.

National Forest
System region

Average cost
per fire

Average cost
per acre

....................... 2004 dollars .......................
1 1,554,254 1,088
2 1,028,415 808
3 983,434 695
4 1,012,436 897
5 2,772,378 2,114
6 3,502,779 1,988
8 157,808 307
9 43,223 106
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percent change in the dependent variable (Gujarati 1988). There-
fore, in the western model, a 1% increase in acres burned decreases
cost per acre 0.32%. In the eastern model, the effect of acres is less
pronounced, with a 1% increase in acres resulting in a 0.18% de-
crease in costs. However, it is important to remember that fire size in
the East tends to be smaller and less variable than in the West. For
the fires in our analysis, the average fire size in the East was 605 ac,
compared with 4,700 ac in the West. There are several reasons given
in the literature for the drop in cost per acre as fire size increases.
Smith and Gonzalez-Caban (1987) state that most fire suppression
activities are adjacent to the fire perimeter and because the ratio of
the perimeter to area decreases as area increases, cost per acre should
decline. Schuster et al. (1997) attribute this decline to economies of
scale and more unburned areas within the perimeter of larger fires.

Looking next at those variables representing the fire environ-
ment, all except elevation were included in the final model. All other
variables (or groups of variables) were statistically significant and for
the most part had the expected signs. For aspect, because we used the
sine and cosine of the azimuth (converted to radians) as the inde-
pendent variable, the results are somewhat difficult to interpret: one

must take the sine and cosine of the aspect (in radians), multiply the
results by the respective coefficients, and add together. However,
negative signs on both coefficients would support our hypothesis,
with southern and western aspects having higher costs. For the west-
ern model, the coefficient on the cosine of aspect was indeed nega-
tive and statistically significant (P � 0.005). The coefficient of the
sine of aspect also was negative, although not statistically significant
(P � 0.149). However, for the eastern model, the coefficient on the
cosine of aspect was positive but statistically insignificant (P �
0.263) and much smaller in magnitude than the coefficient on the
sine of aspect. Because of this, by the time the two parts were added
together, the effects in the East were, for the most part, consistent
with those in the West, with fires with a southeastern, southern,
southwestern, and western aspect having higher costs and fires with
an eastern, northeastern, northwestern, or northern aspect having
lower cost per acre.

Slope has a positive effect (as expected) on cost per acre in the
West with a 1-unit change in the slope percent increasing costs by
0.57% in the West. For instance, a fire with a slope of 35% com-
pared with one with a slope of 10% would cost approximately 15%

Table 3. OLS regression models, western and eastern United States.

Variable

National Forest System Regions 1–6 National Forest System Regions 8–9

Coefficient P value Coefficient P value

ln(Total acres burned) �0.3238 0.000 �0.1941 0.006
Fire enviroment

Aspect (cosine) �0.1675 0.005 0.1009 0.263
Aspect (sine) �0.1066 0.149 �0.4388 0.000
Slope 0.0057 0.003 0.0065 0.059
Elevation Not in model Not in model
Grass �0.5703 0.000 �0.5339 0.015
Brush �0.3613 0.075 2.0391 0.026
Slash 0.2817 0.175 0.3503 0.261
Timber 0.5032 0.001 0.4981 0.038
FIL 2 0.8442 0.000 0.2206 0.265
FIL 3 1.3224 0.000 0.8458 0.000
FIL 4 1.6930 0.000 1.0424 0.000
FIL 5 1.8715 0.000 0.8160 0.010
FIL 6 1.7865 0.000 1.6956 0.000
ERC 0.0113 0.000 0.0047 0.112

Values at risk
ln(Distance to nearest town) Not in model 0.3029 0.014
ln(Total housing value 5) 0.0059 0.686 0.0329 0.188
ln(Total housing value 20) 0.1131 0.000 0.1703 0.098
Wilderness area �0.2123 0.151 0.6703 0.017
IRA 0.1453 0.311 0.5806 0.213
Other SDA 0.1788 0.363 �0.6272 0.208
Wild 
 ln(distance to boundary) �0.4309 0.000 0.7580 0.002
IRA 
 ln(distance to boundary) 0.0861 0.272 �0.1413 0.622
SDA 
 ln(distance to boundary) �0.0905 0.313 �0.2781 0.187

Detection time
Ln(Detection delay) 0.0353 0.171 �0.1859 0.000
Square of ln(detection delay) �0.0184 0.037 0.0581 0.001

Suppression strategy
Initial suppression strategy: confine Not in model 0.6958 0.000
Initial suppression strategy: contain Not in model 1.0056 0.002

Resource availability
ln(Average deviation) �0.0970 0.093 Not in model

Region
Region 2 �0.5398 0.016
Region 3 �0.0792 0.643
Region 4 0.1283 0.446
Region 5 0.9631 0.000
Region 6 0.9697 0.000
Region 8 0.8122 0.000

Constant 4.587 0.000 0.3919 0.699

(Dependent variable � ln(wildland fire suppression expenditures/acre), R2 (West) � 0.44, R2 (east) � 0.49, n (West) � 1141, n (East) � 409), RMSE (West) � 1.5086 RMSE (East) � 1.1308.
IRA, inventoried roadless areas; OLS, ordinary least squares; SDA, special designated areas.
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more, all else held constant. Slope was not statistically significant in
the eastern model.

Fuel type had a very similar effect on cost for the West and the
East. In the West, fires starting in timber cost 61% more than the
reference category (brush4, heavy brush). In the East, the results
were very similar, with timber fires being 62% more expensive than
the reference category. Grass fires were the least expensive in both
models, being 45% less expensive than the reference category in the
West and 44% less expensive in the East. In both models, the coef-
ficients on slash were statistically insignificant but comparable in
magnitude. However, for the brush fuel model, the results were very
different. This is because in the East, there was only one fire that
started in brush (low or moderate brush), and it was a very expensive
fire. Therefore, the coefficient on brush for the East showed that this
fire was 465% more expensive than the reference category (heavy
brush or chaparral). In the West, brush fires were 33% less expensive
than the reference category.

FIL was a highly significant variable in both the western and the
eastern models. All FILs were significantly more expensive than the
reference category, FIL 1. As the FIL categories increase, cost per
acre tends to increase. For the western model, the increase in cost per
acre ranged from 127% for FIL 2 (compared with FIL 1) to a 539%
increase in cost per acre for FIL 5 (FIL 6 was slightly lower at 486%).
In the East, the magnitudes for FILs 2–4 were much smaller, rang-
ing from a 33% increase in cost per acre for fires with FIL 2 (com-
pared with FIL 1) up to a 204% increase for FIL 4. For FIL 6 the
effect was similar to the West, increasing costs by 467% compared
with the base case. However, in the East, fires with FIL 5 were less
expensive than either FIL 4 or FIL 6 fires, increasing cost per acre
123% compared with the base case.

The last fire environment variable that was included in the model
was ERC. Holding all else constant, an increase in the ERC increases
costs 1.13% for every 1-unit increase in ERC (calculated as a cumu-
lative frequency) in the West and 0.41% in the East. So, e.g., a
western fire with an ERC in the 95th percentile, compared with the
80th, would have a cost per acre that was approximately 17%
higher.

The next set of variables dealt with values at risk. The only
surprising finding was that in the eastern model, as the distance to
the nearest town increases, so do costs, with a 1% increase in the
distance increasing costs by 0.31%. We expected this sign to be
negative, indicative of fewer values at risk the farther you are from a
populated place. Collinearity diagnostics did not indicate any prob-
lems with collinearity in the model. Therefore, it may be that in the
East, with its more dense population, the farther from a town that
the fire starts, the farther from firefighting resources and the more
expensive the fire.

The total housing values within 5 and 20 mi of fire ignition were
included in the models as a set, because statistical tests indicated that
their predictive power was higher than if only one was used. Both
variables suggest that as housing values increase, so do costs; how-
ever, only the housing value within 20 mi of fire ignition was statis-
tically significant. Because of the magnitude of the numbers, we
calculated total housing value in units of $100,000. In the West, for
every 1% increase in total housing value (in units of $100,000)
within 20 mi of fire ignition, cost per acre increases 0.11%. This
seems like a small number, but given the magnitude of the housing
values, it can add up quickly. The average total housing value within
20 mi of ignition for Regions 1–6 is over $3 billion. The maximum
is $129 billion, and the minimum is around $450,000.

The variables representing whether or not the fire occurred in
one of three reserved areas and the distance to the area boundary
were all entered as a group and were retained, regardless of signifi-
cance level. The only variables in the group that were statistically
significant were whether or not the fire was in a wilderness area and
the distance to the wilderness area boundary. In the western model,
distance to the wilderness boundary had a statistically significant
negative effect on cost. This conformed to our hypothesis that wil-
derness fires would be less expensive, especially the farther away the
fire was from the wilderness boundary. In the eastern model, how-
ever, the opposite was true. If a fire started in a wilderness area, it was
86% more expensive than a fire not starting in the wilderness (all else
constant) and the cost increased 0.72% for every percent increase in
the distance to the wilderness boundary. This is comparable with the
result for distance to the nearest town that we found in the eastern
model, another indicator that in the more populated East, fires in
more remote areas are more expensive to control.

The time between fire ignition and discovery time increased costs
in the West and decreased costs in the East (although the coefficient
for the western model was not statistically significant). The qua-
dratic terms, however, were statistically significant in both models,
although of different signs. The combined effect of the two terms
showed that in the western model, costs increase as delay increases
until delay is more than approximately 6.3 hours, and then cost per
acre starts to decrease (average delay was 25.2 hours). In the eastern
model, delay decreases cost per acre until the delay in hours is more
than approximately 22.6 hours, at which time cost per acre starts to
increase (average delay was 10.5 hours).

Initial suppression strategy (which is defined as confine, contain,
or control) was not statistically significant in the western model.
However, in the East, an initial strategy of confine increased costs
100%, relative to a strategy of control (the base case). A strategy of
contain (as opposed to control) increased cost per acre by 173%.
This is not the expected effect; control (the base case) is the most
aggressive strategy, and we would expect it to cost more.

Resource availability, as measured by the variable average devia-
tion, was not statistically significant in the eastern model, and in the
western model, it was statistically significant only at the P � 0.10
level. The negative coefficient indicates that as the number of fires
burning in the region increases by 1%, relative to the average for that
time of year, cost per acre decreases by 0.097%. This would be
consistent with a hypothesis that more fires mean fewer resources
available to put on each fire (lower cost) and potentially a larger area
burned, resulting in a lower cost per acre.

Estimating Suppression Expenditures
The main objective of this study was to produce regression equa-

tions that could be useful for predicting suppression expenditures on
individual large fires. We developed a model using fire characteris-
tics that were hypothesized to influence suppression expenditures
such as fire behavior, difficulty of the firefighting environment,
proximity to values at risk, and resource availability, while also con-
trolling for size. The variables used, for the most part, conformed to
our understanding of how they might affect expenditures, and we
feel, therefore, that the relationships we found can be useful in
explaining expenditures on large wildland fires.

We used these equations to make out-of-sample predictions for
large FY 2005 fires. The R2 between the observed and predicted
values in sample (FY 1995–2004) was 0.45 for the western model
and 0.46 for the eastern model. For the out-of-sample predictions, it
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was 0.33 for the western model, but only 0.18 for the eastern model.
Why the substantially poorer performance of the eastern model for
FY 2005? Figure 2 shows the standardized residuals from both the
in-sample and out-of-sample predictions. For the western model,
the two distributions are very similar and chi-square tests showed no
statistical difference between the two distributions (P � 0.51). For
the West, the relationships between fire characteristics and costs
found in the historical data seemed to follow through into FY 2005.
However, for the East, we do see a noticeable difference in the
distributions for FY 2005 compared with the historical data. There
are more fires at each end of the distribution in FY 2005 compared
with the historical distribution and a lot fewer fires in the middle
section of the distribution, especially on the right side. The chi-
square tests confirmed that the two distributions are significantly
different (P � 0.001), with the biggest difference occurring in the
very low cost fires. This may represent a change in how fires are
being fought in the East or perhaps just a fire season that was very
dissimilar to those occurring from FYs 1995–2004.

The estimated equations can be useful for identifying fires within
or outside the original model estimation sample in which their costs
fall outside a “normal range,” given a specific set of fire characteris-
tics. To do so, we identified FY 2005 fires where the actual cost per
acre fell 1 or 2 SDs above or below the predicted cost (both in terms
of the natural log of cost per acre), given the fires explanatory char-
acteristics. For FY 2005, we identified 12 fires that fell outside the 2
SD range; six with higher than expected expenditures and six with
lower than expected expenditures (out of 117 total fires).

These fires can then be reviewed further to see why they cost so
much more (or less) than other fires with similar characteristics. For
some of these “outlier” fires, the extreme difference between ex-
pected and actual costs may be due to the fact that the equations are
built using information available at the start of the fire—nonspatial
information based on characteristics at the ignition point of the fire.
For instance, a fire may have started out in grass but burned pre-
dominantly in timber. The model would, therefore, underpredict

the cost of this fire. However, on review of the fire, the cause of the
extreme cost would be easily discernible. This was the case for a
particular fire that we looked at in more detail because of a fire
review that was being done. The predicted cost per acre was based on
the fuel type at the ignition point, which was grass. However, if the
fuel type was changed to timber (which we found out was the pre-
dominant fuel type), the predicted value would have increased by
nearly 200% and the predicted cost would have been almost iden-
tical to the fire’s actual cost. Therefore, this fire was designated as an
outlier simply because of the nature of the fire occurrence data.
However, for other fires the cause may not be related to the nonspa-
tial nature of the data, but rather to policy issues that are not readily
captured by the variables available for this study. The decision to
fight fires aggressively because of political or jurisdictional issues is
not captured in any of the fire databases. However, by further re-
viewing “outlier” fires, such expenditure patterns may become ap-
parent. Additionally, analysis of the “low cost” fires could lead to the
discovery of firefighting strategies or cost-saving techniques that
could be applied to other fires.

For the process of identifying outliers as discussed previously in
this article, we used the results from the original log-linear model,
which provides linear predictions of the natural log of cost per acre,
not cost per acre itself. To get predictions for cost per acre in dollar
values, it is tempting to simply exponentiate the predicted values
from the log-linear regression. However, this provides a biased and
inconsistent estimate of cost per acre. There are a number of meth-
ods to adjust for this bias. The smearing estimator (Duan 1983) is
derived by multiplying the retransformed predicted values, exp(ŷ),
by a smearing correction factor, which is the average of the retrans-
formed residuals, exp(ê). Another estimator (often called the “naive”
estimator) assumes normally distributed errors and is calculated as
exp(ŷ � �̂/2), where �̂ is the estimated standard error of the regres-
sion residuals. The calculated smearing correction factors for the
western and eastern models were 2.476 and 1.83, respectively. The
naive correction factor (the estimated error variance divided by two)
was 1.137 for the western model and 0.639 for the eastern model.

Predicted costs using the two correction methods and with no
bias correction were generated and compared using the (out-of-sam-
ple) 2005 data. For both models, summary measures such as root
mean square error (RMSE) indicated that the results with no bias
correction produced better estimates, with the smearing estimator
coming in second, and the naive correction coming in third. The
RMSE for the uncorrected predictions was $54, for the smearing
estimator it was $69, and for the naive estimator it was $86. For the
eastern model, the RMSE for the uncorrected predictions was $35,
for the smearing estimator it was $59, and for the naive estimator it
was $61. These results indicate that, in practice, for the models
developed in this study, the uncorrected predictions produce better
predictions for the 2005 data. However, this result will not neces-
sarily be true for other samples, and the theoretical bias and incon-
sistency of the uncorrected predictions still holds.

Another issue to recognize when using these models for predict-
ing suppression expenditures is the large confidence intervals for the
predictions that follow primarily from the large residual variation in
costs. For instance, for the FY 2005 fires, the mean predicted value
was $317/ac with a �1 SD (68%) range of $88–1,132. This large
range in predicted costs must be recognized when using these mod-
els for wildland fire decision support.

Figure 2. Standardized residuals from wildland fire suppression expen-
diture regressions, historical (1995–2004) versus FY 2005.
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Discussion
In this study we found statistical evidence that factors often used

to explain high and rising costs of fire suppression do indeed seem to
be an important determinant of fire expenditures. Variables related
to fire risk or potential such as FIL and ERC were positively related
to fire expenditures, and in the case of FIL, had a large effect on cost
per acre. Wildland-urban interface issues also were found signifi-
cantly related to fire expenditures in the West. As the total housing
value within 20 mi of the fire ignition point increases, cost per acre
increases. Characteristics such as housing value, however, are not
really under the control of land managers. It would be useful to start
collecting data on other factors that may be alterable to see their
effect on suppression expenditures. Examples might include condi-
tion class: primary objectives of fire suppression (why is the fire
being suppressed) that could include categories such as protecting
lives, protecting property, preventing spread onto another agencies
land, protecting threatened and endangered species habitat, and so
on, ranked by importance; location of past fuel treatments; amount
of effort expended on structure protection; road access; resources
used—not just type and number, but hours; and information on the
incident management team type assigned to the fire.

Additionally, improvements in the data would likely improve the
estimates and add to our understanding of the factors influencing
suppression expenditures. Such improvements might include devel-
oping a truly interagency fire occurrence data system with links to
the financial system and more spatially explicit data that includes fire
perimeter information and fire characteristics over a broader land-
scape than just at the fire ignition point.

Equations such as those developed in this study could be used to
flag outliers or fires with extremely high or low costs compared with
what would be expected, as we did for the FY 2005 fires. By further
reviewing these fires, more information may be obtained on the
issues associated with suppression expenditures on large wildland
fires. This could lead to the identification of other data that could be
easily collected on wildfires and lead to improvements in estimates
of wildland fire expenditures. However, it also is possible that the
review of such fires could lead to the identification of policy or
political issues that need to be dealt with before large gains in con-
taining suppression expenditures can be realized.
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